CONTENTS | Contributors Preface | xvii | |--|------------| | 1. Comparative Biochemistry and In Vitro Pathway Reconstruction as Powerful Partners in Studies of Metabolic Diversity | 1 | | P. Fan, G.D. Moghe, and R.L. Last | | | Introduction Characterization of Specialized Metabolite Diversity Using | 2 | | LC/MS and NMR3. Phylogeny-Driven Analysis of the Biochemical Basis of
Specialized Metabolite Diversity | 4 | | 4. Conclusions | 15 | | Acknowledgments | 16 | | References | 16 | | 2. De Novo Deep Transcriptome Analysis of Medicinal Plants
for Gene Discovery in Biosynthesis of Plant Natural Products
R. Han, A. Rai, M. Nakamura, H. Suzuki, H. Takahashi, M. Yamazaki,
and K. Saito | 19 | | Methods for Transcriptomic Study Prior to High-Throughput Sequencing Deep Transcriptome Outline | 20
22 | | 3. Preparation of the Plant Materials and RNA Extraction | 24 | | 4. cDNA Library Construction | 27 | | 5. High-Throughput Sequencing | 30 | | 6. Data Interpretation | 31 | | 7. Application of RNA-Seq on Medicinal Plants and Perspectives | 38 | | Acknowledgments References | 39
39 | | 3. Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances: A Case Study in Sandalwood oil Biosynthesis J.M. Celedon and J. Bohlmann | 4 7 | | | | | Introduction Prior Knowledge of Sandalwood TPSs and P450s and Development | 48 | | of a Hypothesis | 50 | | | 3. | Replication, Sampling, and Statistical Design | 51 | |----|------|--|-----| | | 4. | Defining Temporal and Spatial Variables for Tissue Sampling | 52 | | | 5. | Tissue Sampling | 53 | | | 6. | Metabolite Profiling | 53 | | | 7. | Isolation of High-Quality RNA from Recalcitrant Tissues | 55 | | | 8. | Transcriptome Sequencing and De Novo Assembly | 56 | | | 9. | Transcriptome Mining and Annotation | 57 | | | 10. | Expression Analysis and Candidate Gene Selection | 58 | | | 11. | Functional Characterization of Candidate Genes | 59 | | | 12. | Product Identification | 63 | | , | 4ckı | nowledgments | 65 | | 1 | Refe | erences | 65 | | 4. | ΑV | Vorkflow for Studying Specialized Metabolism | | | | | Nonmodel Eukaryotic Organisms | 69 | | - | M.P | . Torrens-Spence, T.R. Fallon, and J.K. Weng | | | | 1. | Introduction | 70 | | | | "Omics"-Based Novel Specialized Metabolic Pathway Discovery | 72 | | | | Structure–Function Analysis of Specialized Metabolic Enzymes | 80 | | | | Reconstitution of Specialized Metabolic Pathways in Heterologous Systems | 87 | | | | Summary | 90 | | | | nowledgments | 91 | | | | erences | 91 | | 5 | Ge | ne Discovery for Synthetic Biology: Exploring the Novel | | | | | tural Product Biosynthetic Capacity of Eukaryotic Microalgae | 99 | | | | O'Neill, G. Saalbach, and R.A. Field | | | | 1 | Introduction | 100 | | | | Natural Product Synthases | 102 | | | | Genome Mining for the Identification of Natural Products | 106 | | | | Natural Product Discovery | 113 | | | | Conclusions | 115 | | | | nowledgments | 116 | | | Ref | erences | 116 | | 6 | ric. | Prenyltransferase and Polymer Analysis from a Natural | | | | | bber Perspective | 121 | | | | Kwon, EJ.G. Kwon, and D.K. Ro | | | | | Introduction | 122 | | | 2. | Rationale: Observation of Revertants from rer2 Mutant | 125 | | Contents | vii | |----------|-----| | | | | 3. | Generation of rer2 and srt1 Double Knockout Yeast Strain | 128 | |------|--|------| | 4. | Complementation of $rer2\Delta$ srt1 Δ with CPT and CBP | 131 | | 5. | CPT Biochemical Assay Using Yeast Microsomes | · 35 | | 6. | General Discussion | 142 | | Ac | knowledgments | 143 | | Re | ferences | i 44 | | | | | | | eneration and Functional Evaluation of Designer | | | | onoterpene Synthases | 147 | | N. | Srividya, I. Lange, and B.M. Lange | | | 1. | Introduction | 148 | | 2. | Equipment | 150 | | 3. | Materials | 150 | | 4. | Step 1—Generation of Expression Constructs | 153 | | 5. | Step 2—Production of Purified, Recombinant | | | | Target Enzyme | 158 | | 6. | Step 3—Functional Evaluation of Recombinant | | | | Monoterpene Synthases | 161 | | 7. | Conclusions | 164 | | Ac | knowledgments | 164 | | Re | ferences | 164 | | o D. | equels to Synthetic Biology: From Candidate Gene | | | | entification and Validation to Enzyme Subcellular | | | | ocalization in Plant and Yeast Cells | 167 | | | Foureau, I. Carqueijeiro, T. Dugé de Bernonville, C. Melin, F. Lafontaine, | | | | | | | | Besseau, A. Lanoue, N. Papon, A. Oudin, G. Glévarec, M. Clastre, | | | В. | St-Pierre, N. Giglioli-Guivarc'h, and V. Courdavault | | | 1. | Introduction | 168 | | 2. | Identification of Candidate Genes Through Transcriptomic | | | | Data Mining and Analysis | 171 | | 3. | Validation of Candidate Gene Function by Biolistic-Mediated VIGS | 187 | | 4. | Studying the Subcellular Localization of Biosynthetic Pathway | | | | Enzymes in Plant and Yeast Cells to Alleviate Bottlenecks | | | | in Bioengineering Approaches | 191 | | 5. | Concluding Remarks | 202 | | A | cknowledgments | 203 | | Re | eferences | 203 | | 9. | Functional Expression and Characterization of Plant ABC
Transporters in <i>Xenopus laevis</i> Oocytes for Transport | | |-----|---|-----| | | Engineering Purposes | 207 | | | D. Xu, D. Veres, Z.M. Belew, C.E. Olsen, H.H. Nour-Eldin, and B.A. Halkier | 20, | | | 1. Introduction | 208 | | | 2. Preparation of cDNA of Plant ABC Transporter Genes by In Planta | | | | "Exon Engineering" | 211 | | | 3. ABC Transporter Expression in <i>Xenopus</i> Oocytes | 215 | | | 4. Optimization of Transport Assay for Diffusible ABA in <i>Xenopus</i> Oocytes | 217 | | | 5. Case Study: Characterization of the ABA Exporter at ABCG25 in | | | | Xenopus Oocytes | 219 | | | 6. Conclusions | 220 | | | Acknowledgments | 221 | | | References | 221 | | 10. | Quantifying the Metabolites of the Methylerythritol
4-Phosphate (MEP) Pathway in Plants and Bacteria by Liquid
Chromatography–Triple Quadrupole Mass Spectrometry | 225 | | | D. González-Cabanelas, A. Hammerbacher, B. Raguschke, J. Gershenzon, | | | | and L.P. Wright | | | | 1. Introduction | 226 | | | 2. Preparation of Stable Isotope-Labeled Internal Standards | 229 | | | 3. Extraction of Methylerythritol Phosphate Pathway Intermediates from | | | | Biological Sources | 234 | | | 4. Analysis of Methylerythritol Phosphate Pathway Metabolites by LC-MS/MS | 236 | | | 5. Discussion and Summary | 244 | | | References | 245 | | 11 | Establishing the Architecture of Plant Gene Regulatory | | | | Networks | 251 | | | F. Yang, W.Z. Ouma, W. Li, A.I. Doseff, and E. Grotewold | | | | 1. Introduction | 252 | | | 2. The cis-Regulatory Apparatus | 254 | | | 3. The <i>Trans</i> -Acting Factors | 260 | | | 4. Transcription Factor Centered Approaches | 266 | | | 5. Gene-Centered Approaches | 274 | | | 6. Resources for Studying Plant GRNs | 281 | | | 7. Conclusions | 286 | | | Acknowledgment | 287 | | | References | 287 | | | ngineering of Tomato Glandular Trichomes for e Production of Specialized Metabolites | 305 | | | |----------|--|-----|--|--| | R.V | R.W.J. Kortbeek, J. Xu, A. Ramirez, E. Spyropoulou, P. Diergaarde, | | | | | 1. 0 | 1. Otten-Bruggeman, M. de Both, R. Nagel, A. Schmidt, R.C. Schuurink, and P.M. Bleeker | | | | | | | | | | | 1. | Introduction | 306 | | | | 2.
3. | Materials and Technology Proof of Concept: Targeted Expression of a Terpene Precursor | 310 | | | | • | Gene in Tomato Glandular Trichomes | 318 | | | | 4. | Summary | 325 | | | | Ac | knowledgments | 326 | | | | | ferences | 327 | | | | 13. To | omato Fruits—A Platform for Metabolic Engineering | | | | | | Terpenes | 333 | | | | M. | . Gutensohn and N. Dudareva | | | | | 1. | Introduction | 334 | | | | 2. | Terpenoid Formation in Tomato Fruits | 338 | | | | 3. | Transgene Expression in Ripening Tomato Fruits | 340 | | | | 4. | Overexpression of Terpene Biosynthetic Genes in Tomato Fruits | 343 | | | | 5. | Analysis of Terpenes in Tomato Fruits | 349 | | | | 6. | Conclusions | 350 | | | | Ac | cknowledgments | 352 | | | | Re | eferences | 352 | | | | 14. Li | braries of Synthetic TALE-Activated Promoters: | | | | | М | lethods and Applications | 361 | | | | T. | Schreiber and A. Tissier | | | | | | Introduction | 361 | | | | 2. | Construction of Libraries of Synthetic Promoters Using Golden | | | | | | Gate Cloning | 366 | | | | | Analyzing Promoter Activity in Transient Assays | 371 | | | | 4. | Conclusion | 373 | | | | Re | eferences | 375 | | | | Autho | r Index | 379 | | | | Subjec | ct Index | 419 | | |